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Letters

Comments on “A Procedure Defining Behavior

of Weight Functions Near the Edge for Best

Convergence Using the Galerkin Method”

Patricio A. A. Laura, Carlos A. Rossit and Diana V. Bambill

The authors are to be congratulated for their important and timely

contribution [1]. Their procedure for determining the behavior of

the weight functions near the edge so as to accomplish optimum

convergence using Galerkin’s method for calculating linear function-

al of the theory of electromagnetism deserves special credit and

constitutes, indeed, an original contribution. The writers feels that

their approach will be of considerable interest to researchers in other

fields of engineering and applied sciences i.e. heat and mass flow,

fracture mechanics, etc.

It appears, also, that their technique will be of value when used

in conjunction with universal numerical techniques such as the finite

element method.

It is also the purpose of this Letter to briefly refer to a “global”

optimization procedure of the coordinate functions used in connection

with the Galerkin, Rayleigh–Ritz or the Kantorovich method [2]–[6]

based on Lord Rayleigh’s optimization procedure [7]. The procedure

will be illustrated here when determining eigenvalues in two classical

problems:

● determination of the lowest cut-off frequency in a circular

waveguide (TM modes)

● calculation of the natural frequencies of vibration of a transducer

plate (axisymmetric modes).

The first problem is governed by Helmholtz equation

and the boundary condition

~(, = a) = o. (lb)
Expressing (la) in terms of the radial variable “r-” yields

(2)

whose exact solution is well-known.

In order to obtain an approximate solution using the Galerkln

method one may use the simple approximation

@Rq!J.=A, (l-/’) (3)

and making use of Galerkin’s procedure one obtains A = 2.A5; the

exact value being 2.4048.

In view of the fact that Galerkin’s method yields upper bounds for

the eigenvalues one may use

then

A == A(y) (5)
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Fig. 1. Determination of the fundamental cut-off frequency coefficient of a

circular waveguide (TM modes) using the Galerkin method and a globally
optimized coordinate function.

and requiring that ~ be a minimum with respect to ~, i.e.

(6)

one obtains an optimized value of the desired eigenvalue. In this

respect expression (4) constitutes a “global” optimization of the

coordinate function. For the present case the optimum value of v

is (?).Pt = 1.414 and the resulting eigenvahre is (A)~,~ = a.41~

which is in excellent agreement with the exact value (see Fig. 1).

Making now

(7)

and applying Galerkin’s optimized procedure one obtains a funda-

mental eigenvalue which coincides with the exact one within five

significant figures. Minimizing the second and third eigenvalues [5]

one achieves also very good accuracy: A2 = 5.521 and A J = 8.68,

the exact values 5.52007 and 8.6537 respectively.

Consider now a free, circular plate of outer radius “a “ (this type of

problem arises in ultrasonic transducers). The governing differential

system is

$m’ =0
,=.

(8a)

(8b)

8c)
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wherep: density of the plate material; h: plate thickness; D: flexural

rigidity of the plate and p: Poisson ratio. Poisson’s ratio is taken

equal to 0.30 for present calculations.

Approximating W by means of

where the aj’s and 13~’s are such that each coordinate function

contained in (9) satisfies identically the boundary conditions (8b) and

(8c). Applying Galerkin’s procedure one obtains, minimizing with

respect to ~, that the first, nonzero, eigenvalue is -WI a’ =

9.003 which coincides with the exact vahte, within 4 significant

figures. The higher eigenvaIues are, again, obta@ed minimizing the

higher roots of the frequency equation with respect to y [5].

It

also

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

is important to point out that this optimization procedure has

been implemented in finite element codes [8].
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Corrections to “A New Formulation of the Boundary

Condition at Infinity for a Hybrid Radiation

Mode and Its Application to the Analysis of

the Radiation Modes of Microstrip Lines”

Wlodzimierz Zieniutycz

In the above paper [1] a few corrections should be introduced as

a result of additional analysis and numerical calculation:

●

●

For the odd case (J. (~) – odd) application of (12) leads to

infinite power flux for both solutions of (11). The analysis of

behavior of A~) (Q) at the points a = O and a = 72 yields

the value of the amplitude which gives the finite power flux of

perturbed LSM mode. The proper choice of this amplitude is:

(1)

where p > 0. The perturbed LSE odd solution of (11) shows

infinite power flux-this mode has no physical meaning and

should be neglected.

The iterative procedure described in Section III of [1] is diver-

gent for even case (.JZ(a) – even). We can, however, rearrange

(11) to an alte~ative set of equations:

(2)A~)(a) = f3[A~)(a), As) (a)]

(3)As)(a) = f4[A9(ci), Af)(a)]

Spectral amplitude A~) (a) is treated now as a known function

and A~) (a) is found by the same iterative procedure (in Fig. 3

[1] we should only replace A$) (a) with A~) (a)). The analysis

of behaviour of .4~) (a) at tie points o = O and a = 72 yields

the amplitude which results in the finite power flux of perturbed

LSE mode. The proper choice of this amplitude is:

p+l/2
A$)(Q) w y2 (4)

where p > 0. The second solution (i.e. perturbed LSM even

mode) should be neglected as a mode showing infinite power

flux. Numerical results of convergence of the proposed proce-

dure are shown in Table I.

In effect we conclude that the hr mode of microstrip line can

be treated as a superposition of perturbed LSM odd and LSE even

modes. Numerical calculation (see Table I) showed that the modifi-

cations did not change the fast convergence of iterative procedure.
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