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Letters

Comments on “A Procedure Defining Behavior
of Weight Functions Near the Edge for Best
Convergence Using the Galerkin Method”

Patricio A. A. Laura, Carlos A. Rossit and Diana V. Bambill

The authors are to be congratulated for their important and timely
contribution [1]. Their procedure for determining the behavior of
the weight functions near the edge so as to accomplish optimum
convergence using Galerkin’s method for calculating linear function-
als of the theory of electromagnetism deserves special credit and
constitutes, indeed, an original contribution. The writers feels that
their approach will be of considerable interest to researchers in other
fields of engineering and applied sciences i.e. heat and mass flow,
fracture mechanics, etc.

It appears, also, that their technique will be of value when used
in conjunction with universal numerical techniques such as the finite
element method.

It is also the purpose of this Letter to briefly refer to a “global”
optimization procedure of the coordinate functions used in connection
with the Galerkin, Rayleigh-Ritz or the Kantorovich method [2]-[6]
based on Lord Rayleigh’s optimization procedure [7]. The procedure
will be illustrated here when determining eigenvalues in two classical
problems:

+ determination of the lowest cut-off frequency in a circular
waveguide (TM modes)

« calculation of the natural frequencies of vibration of a transducer
plate (axisymmetric modes).

The first problem is governed by Helmholtz equation

Vi + Ay =10 (1a)
and the boundary condition
P(r =a)=0. (1b)
Expressing (1a) in terms of the radial variable “r” yields
ey ldy | o,
) + i +A%Y =0 @

whose exact solution is well-known.
In order to obtain an approximate solution using the Galerkin
method one may use the simple approximation

¥~ e = A (1—17) 3)

and making use of Galerkin’s procedure one obtains A = 2.45; the
exact value being 2.4048.

In view of the fact that Galerkin’s method yields upper bounds for
the eigenvalues one may use

Y2y = A(l—77), @
then
A= A() ®)
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Fig. 1. Determination of the fundamental cut-off frequency coefficient of a

circular waveguide (TM modes) using the Galerkin method and a globally
optimized coordinate function.

and requiring that A be a minimum with respect to ~, i.e.

dX

=0 6

i (6)
one obtains an optimized value of the desired eigenvalue. In this
respect expression (4) constitutes a “global” optimization of the
coordinate function. For the present case the optimum value of ~v
i8 (7)opt = 1.414 and the resulting eigenvalue is (M) = 2.414
which is in excellent agreement with the exact value (see Fig. 1).
Making now

3
b= A(l—r7)r Q)

=0

and applying Galerkin’s optimized procedure one obtains a funda-
mental eigenvalue which coincides with the exact one within five
significant figures. Minimizing the second and third eigenvalues [5]
one achieves also very good accuracy: A, = 5.521 and A3 = 8.68,
the exact values 5.52007 and 8.6537 respectively.

Consider now a free, circular plate of outer radius “a ” (this type of
problem arises in ultrasonic transducers). The governing differential
system is

VEVIW — %uﬁw =0 (8a)
LW g dw
T ar| T (86)
iv"’w =0 8¢)
dr —a
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where p: density of the plate material; h: plate thickness; D: flexural
rigidity of the plate and u: Poisson ratio. Poisson’s ratio is taken
equal to 0.30 for present calculations.

Approximating W by means of

2 T\ r\2 r\2
W Wa —§AJ [%(;) +o(3) + 1] ) ©
where the o,’s and §,’s are such that each coordinate function
contained in (9) satisfies identically the boundary conditions (8b) and
(8c). Applying Galerkin’s procedure one obtains, minimizing with
respect to -y, that the first, nonzero, eigenvalue is \/ph/Dwia® =
9.003 which coincides with the exact value, within 4 significant
figures. The higher eigenvalues are, again, obtained minimizing the
higher roots of the frequency equation with respect to v [S].

It is important to point out that this optimization procedure has
also been implemented in finite element codes [8].
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(6]

Corrections to “A New Formulation of the Boundary
Condition at Infinity for a Hybrid Radiation
Mode and Its Application to the Analysis of

the Radiation Modes of Microstrip Lines”

Wiodzimierz Zieniutycz

In the above paper [1] a few corrections should be introduced as
a result of additional analysis and numerical calculation:

» For the odd case (J.(a) — odd) application of (12) leads to
infinite power flux for both solutions of (11). The analysis of
behavior of Ag)(a) at the points o« = 0 and o = 72 yields
the value of the amplitude which gives the finite power flux of
perturbed LSM mode. The proper choice of this amplitude is:

AP () ~ A tH2 )

where p > 0. The perturbed LSE odd solution of (11) shows
infinite power flux—this mode has no physical meaning and
should be neglected.

« The iterative procedure described in Section HI of [1] is diver-
gent for even case (J.(«) — even). We can, however, rearrange
(11) to an alterpative set of equations:

AD(a) = £3[42(a), AD ()] )
AP(a) = £1[AP (). AD ()] 3)

Spectral amplitude Ag) () is treated now as a known function
and Ag)(a) is found by the same iterative procedure (in Fig. 3
[1] we should only replace Ag) () with Ag) («)). The analysis
of behaviour of Ag)( o) at the points o = 0 and o = 2 yields
the amplitude which results in the finite power flux of perturbed
LSE mode. The proper choice of this amplitude is:

AD (@) ~ BT @

where p > 0. The second solution (i.e. perturbed LSM even
mode) should be neglected as a mode showing infinite power
flux. Numerical results of convergence of the praposed proce-
dure are shown in Table 1.

In effect we conclude that the hr mode of microstrip line can
be treated as a superposition of perturbed LSM odd and LSE even
modes. Numerical calculation (see Table I) showed that the modifi-
cations did not change the fast convergence of iterative procedure.
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